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Abstract.     In recent years with the huge amount of biology data in bioinformatics field, especially with the Human 
Genome Project, urgent needs to analyze this data to exploit optimization. Biology data characterized from other data, it 
directly affects the human life dramatically and significantly. In bioinformatics field there are a lot of problems need to be 
solved. One of the most important problem is metabolic pathway hole problem, where solving this problem helps the  
biologist to set the correct gene in a pathway which have a hole where the path of this pathway is unknown in some parts of 
it, to use these result is several useful application as gene therapy. Until now there are no enough researches to solve 
missing gene problem. Previous researches used BLAST as the most popular similarity tool because similar sequences 
usually have common descent, and therefore, similar structure and function, but these researches select some organisms 
from the huge amount of available organisms.  In this paper we will introduce our observations of the role of organism 
selection and how this selection affects on the results of filling pathway hole.  
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1 Introduction 

Metabolic network is one of the important classes of biological networks, consisting of enzymatic reactions involving 
substrates and products. Recent developments in pathway databases enable us to analyze the known metabolic networks. 
However, most organisms’ specific metabolic networks are left with a number of unknown enzymatic reactions, that is, 
many enzymes are missing in the known metabolic pathways, and these missing enzymes are defined as metabolic pathway 
holes [1, 2], Although all reactions in some pathways are known, but also this pathways have a holes, the hole in this case 
means here that, we do not know the gene(s) that produce this enzyme. 

With the up growth of metabolic pathways and their problems like holes, that accompanied the development of 
some algorithms to solve this problem taking advantage of the great development which computer science has reached, 
these algorithms depend on some approaches which most of them based on homology searches [3,4]. If the sequences are 
similar, this means that they often derive from the same ancestral sequence, which means that, they probably have the same 
ancestor, share the same structure, and have a The importance to know this, that  we  can extrapolate data  we  know about a 
particular DNA or protein sequence to all similar DNA and protein sequences.[5]. 

Because previous researches used BLAST as the most popular similarity tool using some organisms in the 
similarity process as Ahmed ElSadek, Laila ElFangary  and  Alaa.Yassin team[1] used the seven organisms of RGBMAPS 
database [6]and done their own algorithm to solve pathway hole problem. In this paper we will focus on how the organism 
selection play an important role in the filling hole results. 

2 Pathway Holes 

Metabolic network is one of the important classes of biological networks, consisting of enzymatic reactions involving 
substrates and products. Recent developments in pathway databases enable us to analyze the known metabolic networks. 
However, most organism specific metabolic networks are left with a number of unknown enzymatic reactions, that is, many 
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enzymes are missing in the known metabolic pathways, and these missing enzymes are defined as metabolic pathway holes 
[6, 7], Although all reactions in some pathways are known, but also this pathways have a holes, the hole in this case means 
here that we do not know the genes behind this reactions. So we can shorten the metabolic pathway hole types to two types: 

• Unidentified enzymatic reactions in the pathway (figure1.A). 
• Unknown genes behind the known reactions in the pathway (figure1.B). 

 

Fig.1 . Pathway hole types. 

The reason of these holes in the pathway is the huge amount of genome sequencing data, but on the other hand 
there are no laboratory experiments covering this size of data in all organisms, add to that the difficulty of conducting 
laboratory research on some organisms due to the length of its life cycle or their rarity or for other reasons, like Canes 
families, Macacafascicularis and Pan troglodytes. And do not forget to mention the expensive price of these laboratory 
experiments [8, 9]. 

3 BLAST and filling pathway hole 
 
In the previous works to fill pathway hole, the researches depends on BLAST to do the similarity phase of their work after 
applying their own algorithms. The researchers select specific organisms to use it in the similarity process between these 
organisms and target organism.  

Here we want to know: does the organism selection have an effects on the result, which used in filling hole 
problem or not? To answer this question we applied BLAST on 70 different enzymes which missed its genes. The similarity 
process occurred with the seven organisms, Rattus norvegicus, Gallus gallus, Bos taurus, Mus musculus, Arabidopsis 
thaliana, Pongo abelii and Saccharomyces cerevisiae which included in RGBMAPS database [6] and derived its name from 
the first letter of each organism. 

Table 1 presents the similarity process results with the selected organism and we captured the first hit of the 
BLAST result because, BLAST ranks the result according to the best E-Value. The similarity process repeated with the 
seven organisms in the 70 enzymes, so the similarity process repeated 490 times .column 2 of table 1 represents EC of the 
enzyme; column 3 represents the real pathway gene of this enzyme in the target organism which is human in our case, from 
column 4 to column 10 represents the genes that catalyze this enzyme but in the different organisms and the last column 
represents the candidate gene after shot-gun score voting. 
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Tab.1: Similarity process results in the seven organisms using BLAST 
 

# EC Pathway 
genes Arab. Bos. Gallss Mus pongo rate Scr. Candidate 

gene 
1 2.3.1.61 DLST DLST DLST  DLST  DLST DLST DLST 
2 1.2.4.1 PDHA1 PDHB PDHB  PDHA1 PDHB PDHA1 PDHA1 PDHA1 
3 1.8.1.4 DLD DLD   DLD DLD DLD DLD DLD 
4 2.3.1.12 DLAT DLAT  DLAT DLAT  DLAT DLAT DLAT 
5 4.2.1.47 GMDS GMDS   GMDS    GMDS 

6 1.2.4.4 BCKDHA  BCKDH
B  BCKDHA  BCKDH

A  BCKDHA 

7 2.3.1.168 DBT  DBT  DBT    DBT 

8 2.4.1.174 CSGALN
ACT1    CSGALN

ACT1    CSGALNA
CT1 

9 2.4.1.175 CHSY1    CHSY3    CHSY3 
10 2.4.1.226 CHSY1    CHSY3    CHSY3 

11 2.7.7.15 PCYT1B    PCYT1A  PCYT1
A 

PCYT1
A PCYT1A 

12 2.7.8.2 CEPT1  CHPT1 CEPT1 PCYT1A  CEPT1 EPT1 CEPT1 
13 3.1.4.4 PLD1 PLD2 PLD2  PLD1 PLD3 PLD1 PLD2 PLD2 
14 1.14.13.39 NOS1 NOA1 NOS3 NOS2 NOS2  NOS1  NOS2 
15 6.3.4.5 ASS1 ASS1 ASS1 ASS1 ASS1  ASS1 ASS1 ASS1 
16 4.3.2.1 ASL  ASL ASL ASL  ASL ASL ASL 
17 2.5.1.21 FDFT1 FDFT1 FDFT1  FDFT1 FDFT1 FDFT1 FDFT1 FDFT1 
18 1.14.99.7 SQLE SQLE   SQLE  SQLE SQLE SQLE 

19 1.1.1.1 ADH1B ADH5 ADH5 ADH1C CACNA2
D2 ADH6 CACN

A2D2 ADH1B 

CACNA2D
2 

ADH5 

20 1.2.1.3 ALDH2 ALDH3A
1 ALDH2  ALDH2 ALDH

1B1 ALDH2 ALDH2 ALDH2 

21 6.2.1.1 ACSS1  ACSS3  ACSS1 ACSS3  ACSS2 ACSS1 

22 1.11.1.6 CAT ALDH3A
1 CAT  CAT CAT  CAT CAT 

23 5.3.3.2 IDI1 IDI1 IDI1  IDI1 IDI1 IDI1 IDI1 IDI1 
24 2.5.1.1 FDPS FDPS GGPS1 FDPS FDPS  FDPS GGPS1 FDPS 
25 2.5.1.10 FDPS FDPS GGPS1 FDPS FDPS  FDPS GGPS1 FDPS 

26 4.1.1.15 GAD1 SGPL1 GLUL GLUL GAD1 GAD1 GAD2 SGPL1 GAD1 
SGPL1 

27 1.2.1.24 ALDH5A
1 

ALDH5A
1   ALDH5A

1  ALDH5
A1  ALDH5A1 

28 2.6.1.19 ABAT  ABAT  ABAT  ABAT ABAT ABAT 
29 1.11.1.9 GPX1 GPX4 GPX1  GPX1  GPX1 GPX4 GPX1 
30 1.8.1.7 GSR GSR   GSR  GSR GSR GSR 
31 1.11.1.12 GPX4 GPX4 GPX4  GPX4  GPX4  GPX4 
32 1.4.4.2 GLDC GLDC  GLDC GLDC   GLDC GLDC 
33 2.1.2.10 AMT AMT AMT AMT AMT   AMT AMT 
34 1.8.1.4 DLD DLD   DLD DLD DLD DLD DLD 
35  

 

BDH1  BDH1 BDH1 BDH1  BDH1  BDH1 
36 2.8.3.5 OXCT1    OXCT2  OXCT2  OXCT2 
37 2.3.1.9 ACAT1 ACAT1 ACAT1  ACAT2  ACAT2 ACAT1 ACAT1 
38 6.4.1.3 PCCB  PCCB  PCCB  PCCA  PCCB 

39 5.1.99.1 MCEE  ACAT1  MCEE    MCEE 
ACAT1 

40 5.4.99.2 MUT  MUT  MUT MUT   MUT 
41 2.7.1.23 NADK NADK   NADK   NADK NADK 

42 3.1.3.2 ACP6 PAPL ACP1 ACP1 ACP6 ACP2 ACP5 MINPP
1 ACP1 

43 1.6.1.2 NNT  NNT  NNT    NNT 
44 1.1.1.49 G6PD G6PD   G6PD  G6PD G6PD G6PD 
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# EC Pathway 
genes Arab. Bos. Gallss Mus pongo rate Scr. Candidate 

gene 
45 3.1.1.31 PGLS PGLS PGLS  PGLS  PGLS PGLS PGLS 
46 1.1.1.44 PGD    PGD  PGD PGD PGD 
47 1.14.16.1 PAH  PAH  PAH  PAH  PAH 

48 4.2.1.96 PCBD1  PCBD1 PCBD2 PCBD2 PCBD2 PCBD1  PCBD1 
PCBD2 

49 1.5.1.34 QDPR  QDPR  QDPR  QDPR  QDPR 

50 2.7.1.32 CHKA    CHKA  PCYT1
A CHKB 

CHKA 
PCYT1A 
CHKB 

51 2.7.7.15 PCYT1A    PCYT1A  PCYT1
A 

PCYT1
A PCYT1A 

52 2.7.8.2 CHPT1  CHPT1 CEPT1 PCYT1A  CEPT1 EPT1 CEPT1 
53 2.7.1.82 CHKB    CHKA  CHKA CHKA CHKA 
54 2.7.7.14 PCYT2  PCYT2  PCYT2  PCYT2 PCYT2 PCYT2 
55 2.7.8.1 CEPT1  EPT1 CEPT1 EPT1 EPT1 CEPT1 EPT1 EPT1 
56 3.5.4.16 GCH1   GCH1 GCH1  GCH1 GCH1 GCH1 
57 4.2.3.12 PTS    PTS PTS PTS  PTS 
58 1.1.1.153 SPR  SPR  SPR  SPR  SPR 
59 1.3.1.2 DPYD  DPYD  DPYD DPYD DPYD  DPYD 
60 3.5.2.2 DPYS    DPYS  DPYS  DPYS 
61 3.5.1.6 UPB1    UPB1 UPB1 UPB1  UPB1 

62 1.2.1.18 ALDH6A
1  ALDH6

A1  ALDH6A
1  ALDH6

A1  ALDH6A1 

63 2.6.1.1 GOT1 GOT2 GOT1 MDH1 GOT1 GOT1 GOT1 GOT1 GOT1 
64 1.1.1.37 MDH2 MDH2 GOT2 MDH1 MDH2 MDH2 MDH2 MDH2 MDH2 

65 1.2.1.8 ALDH7A
1 ALDH2 ALDH7

A1  ALDH7A
1  ALDH7

A1  ALDH7A1 

66 1.1.99.1 CHDH    ALDH7A
1    ALDH7A1 

67 2.3.1.38 FASN  FASN FASN FASN  FASN HSD17
B4 FASN 

68 2.3.1.41 OXSM OXSM FASN FASN FASN  FASN SYBU FASN 
69 2.7.1.26 RFK    RFK   RFK RFK 
70 2.7.7.2 FLAD1    FLAD1 FLAD1  FLAD1 FLAD1 

 
Results: by comparing column 3 and column 10 we can calculate the total accuracy of BLAST, where the first one 
represents the real gene and the other one represents the candidate one after applying shotgun score on the seven organisms. 
So the total accuracy of BLAST on 70 enzymes = the number of correct genes / the number of real genes = 61/70 = 87%. 
 
4 Observations 
In the previous section we showed the total results of BLAST after applying shot-gun score , now we will answer the 
question we ask before , does the organism selection have an effects on the result, which used in filling hole problem or not? 
To answer this question we summarize table 1 in table 2, showing the results of BLAST in each organism.  

As shown Table and figure 2 answer the question clearly , where the second column in table 2 represents the 
number of correct genes which BLAST give in this organism , the third one give us the number of error results , the fourth 
column represents the number of cases which this organism cant candidate genes at all to this enzyme , the five column sum 
the two previous columns and the last one with the accuracy label represent the accuracy of this organism with the 70 
enzyme by divide the number of the correct genes in the second column on 70. 
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Tab. 2: BLAST results in each organism 

organism No. of correct 
genes 

No. of error 
genes 

Not found genes Total Error accuracy 

Arab. 27/70 6/70 37/70 43/70 38.5% 
Bos. 39/70 5/70 26/70 31/70 56% 

Gallss. 17/70 4/70 49/70 53/70 24% 
Mus. 63/70 7/70 0/70 7/70 90% 

Pongo. 18/70 3/70 49/70 52/70 26% 
Rate. 49/70 5/70 16/70 21/70 70% 
Scr. 36/70 8/70 26/70 34/70 51% 

 

27

39

17

63

18

49

36

6 5 4
7

3 5
8

37

26

49

0

49

16

26

0

10

20

30

40

50

60

70

Arab. Bos. Gallss. Mus. Pongo. Rate. Scr.

correct  genes

error genes 

Not found genes

 
Fig. 2: chart of the seven organisms using BLAST. 

 
The big notation which appears on the results above, that the number of not found genes affect on the final 

accuracy. Table 3 represents the percent of completeness data of each organism. 

Tab. 3: The percent of completeness data of each organism 

organism Found /total percent 
Arabidopsis thaliana 33/70 47% 

Bos taurus 44/70 63% 
Gallus gallus 21/70 30% 

Mus musculus 70/70 100% 
Pongo abelii 21/70 30% 

Rattus norvegicus 54/70 77% 
Saccharomyces 44/70 63% 
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5 Organisms Ranking 
 
From table 2 and 3, we observe that ranking of the organisms by the accuracy are equally likely to the ranking by the 
completeness of its data as presented in table 4. 

Tab. 4: Organisms ranking summarization 

# Ranking by the accuracy % Ranking by completeness of data % 
1 Mus musculus 90% Mus musculus 100% 
2 Rattus norvegicus 70% Rattus norvegicus 77% 
3 Bos Taurus 56% Bos Taurus 63% 
4 Saccharomyces 51% Saccharomyces 63% 
5 Arabidopsis thaliana 38.5% Arabidopsis thaliana 47% 
6 Pongo abelii 26% Pongo abelii 30% 
7 Gallus gallus 24% Gallus gallus 30% 

 
From table 4 we observe that, the organism selection affect directly on solving filling pathway hole problem, where 

the organisms which in the same taxonomy with human give a good results as Mus musculus, Rattus norvegicus and Bos 
Taurus, but we must keep in mind the data size these organisms, because we observed that some organisms are fare from 
human in taxonomy like Saccharomyces and  Arabidopsis thaliana but give better results than other organisms which are 
close to human like Pongo abelii , the reason is the data size. 

6 Conclusion 

We advice the researchers who need to try to solve pathway hole problem to select the organisms which are very close in 
taxonomy to the target organism and also have a suitable data size as Mus musculus and Rattus norvegicus, and also they 
may have a good results with the organisms which have a big data size regardless the taxonomy factor. 
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